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Automatic Segmentation of Mechanically
Inhomogeneous Tissues Based on

Deformation Gradient Jump
Colleen M. Witzenburg*, Rohit Y. Dhume, Spencer P. Lake, and Victor H. Barocas

Abstract—Variations in properties, active behavior, injury, scar-
ring, and/or disease can all cause a tissue's mechanical behavior
to be heterogeneous. Advances in imaging technology allow for
accurate full-field displacement tracking of both in vitro and in
vivo deformation from an applied load. While detailed strain fields
provide some insight into tissue behavior, material properties are
usually determined by fitting stress-strain behavior with a con-
stitutive equation. However, the determination of the mechanical
behavior of heterogeneous soft tissue requires a spatially varying
constitutive equation (i.e., one in which the material parameters
vary with position). We present an approach that computation-
ally dissects the sample domain into many homogeneous subdo-
mains, wherein subdomain boundaries are formed by applying a
betweenness based graphical analysis to the deformation gradient
field to identify locations with large discontinuities. This novel par-
titioning technique successfully determined the shape, size and lo-
cation of regions with locally similar material properties for: (1) a
series of simulated soft tissue samples prescribed with both abrupt
and gradual changes in anisotropy strength, prescribed fiber align-
ment, stiffness, and nonlinearity, (2) tissue analogs (PDMS and col-
lagen gels) which were tested biaxially and speckle tracked (3) and
soft tissues which exhibited a natural variation in properties (ca-
daveric supraspinatus tendon), a pathologic variation in properties
(thoracic aorta containing transmural plaque), and active behavior
(contracting cardiac sheet). The routine enables the dissection of
samples computationally rather than physically, allowing for the
study of small tissues specimens with unknown and irregular in-
homogeneity.

Index Terms—Biaxial testing, biomechanics, elastography,
graph theory, heterogeneity, inverse methods, pattern recognition,
subdomain method, tissue mechanics.
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I. INTRODUCTION

T ISSUES are often mechanically inhomogeneous due
to variations in properties (e.g., supraspinatus tendon

[1], [2]; pulmonary artery [3]; left recurrent laryngeal nerve
[4]), variations in active behavior (e.g., myocardial shortening
[5]), injury (e.g., whiplash [6]), myocardial [7]–[9] or dermal
[10]–[12] scarring), or disease (coronary artery disease [13];
idiopathic pulmonary fibrosis [14], [15]; or cancer [16], [17]).
The imaging of soft tissues to identify regional variations in
mechanical properties, known as elastography, has become
a major focus for medical imaging (reviewed by [18]–[21]).
The main goal of elastographic studies has traditionally been
the identification of high-stiffness regions (e.g., tumor, vas-
cular plaque, liver fibrosis) within a compliant soft tissue.
For example, Goenezen et al. [16] identified the size, shape,
and location of varying shear modulus regions within a tissue
with exceptional clarity in a study of breast cancer tumors.
If only broad differences in stiffness are of interest, then the
simplifying assumptions of isotropy and linearity (infinitesimal
deformation) are justified. In order to capture more completely
the complex material properties of the tissue, however, a more
robust method is needed. The intrinsic complexity of soft tis-
sues presents a tremendous challenge in constitutive modeling.
In particular, the fibrous structural constituents of a tissue typi-
cally have orientations and concentrations unique to the tissue's
anatomy and physiology, causing strong anisotropy in the
mechanical behavior of the tissue. In addition, the stress-strain
response of soft tissues is often markedly nonlinear; the tissue
is initially very compliant, but as the strain is increased, it
becomes much stiffer.
A few elastographic inverse techniques have been employed

which account for the anisotropic, nonlinear behavior exhibited
by soft tissues. However, in order to employ these techniques
and retain a heterogeneous analysis the sample domain must
be divided into homogeneous subdomains which are tested or
analyzed separately. The methods developed to approach the
problem fall into two broad categories: (1) distributing local
tests on the tissue sample, and (2) computationally dividing the
sample into presumably homogenous subdomains. As an ex-
ample of the distributed testing method, Cox et al. [22], de-
veloped an indentation method capable of capturing anisotropy
by combining force and deformation gradient data. They uti-
lized repeated indentation to quantify the inhomogeneous na-
ture of heart valve leaflet [23], which they coupled with inverse
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finite element analysis and a nonlinear, anisotropic constitutive
equation [24] to determine local material properties. Chai et al.
[13], [25] further utilized the methods of Cox to characterize the
heterogeneous properties of atherosclerotic plaques, and other
approaches have also been developed [26], [27]. In order to
determine regional differences, indentation must be applied re-
peatedly to a tissue specimen, requiring either some a priori
knowledge of the regions of interest or an extensive blanket
testing protocol.
Inflation and extension are often preferred asmore relevant for

in-vivo tissue function, usually in conjunction with the homoge-
nous subdomain approach. Thework of Seshaiyer &Humphrey
[28] is an excellent example of this strategy, applying a hyper-
elastic constitutive equation to each homogeneous subdomain
within a heterogeneous sample. The method was utilized suc-
cessfully to quantify the material properties of the lens capsule
[29] but was limited to small regions of interest within the tissue
and has yet to be applied to full-field vessel inflation. Kroon and
Holzapfel [30], [31] proposed a different homogenous subdo-
mainmethod for the estimation of the nonlinear elastic properties
of anisotropic membranes during inflation of cerebral and aortic
aneurysms with particular emphasis on determination of the
anisotropy distribution within the material. Using a hierarchical
approach, they successively grouped elements into smaller and
smaller locally similar subgroups based on sample geometry.
Girard et al. [32] used a similar approach to partition the sclera
focusing on shell anatomy. Tomographic approaches, like that
presented by Liu et al. [33] for the identification of anisotropic
tumors also require the partitioning on the sample domain into
homogenous subregions. Again, partitioning was determined
based on the tissue geometry.
From this brief survey, certain essential themes emerge: (1)

A spatially varying constitutive equation (i.e., material param-
eters vary with position) is often, if not always, necessary to
capture the behavior of a complex tissue. (2) The most common
way to implement such variation is by partitioning the sample
into homogeneous subdomains. (3) The best approach to iden-
tifying partitions, particularly in the absence of anatomical in-
formation as a guide, remains an open question and may in fact
be the greatest impediment to regional mechanical characteri-
zation. This last point is critical - inverse methods per se have
advanced to the point where they are significantly better than
the subdomain determination methods on which they rely, pre-
senting both a challenge and an opportunity for our community
as a whole. Before turning to our approach, we review briefly
previous work specifically on the identification of suitable sub-
domains.
Subdomain determination often requires extensive exper-

imental interrogation, a computationally intensive iterative
approach, or a priori information concerning tissue structure.
Extensive testing allows true local interrogation of material
properties, but the testing mode may not load the tissue in a
physiologically relevant manner (i.e., indentation for ventric-
ular or bladder tissue), it may threaten tissue integrity, and it is
difficult to execute in-vivo. Various computationally intensive
iterative approaches have arisen for the inverse measurement
of tissue properties. While these methods are promising, they
often require a prohibitively large number of model parameters

resulting in both long computation times and concerns about
parameter uniqueness. Structural measurements [34]–[41] can
inform the partitioning process, but are limited in application
to samples suitable for both structural and mechanical charac-
terization if material properties are to be determined.
Strain is an attractive alternative to structural or anatomical

variation as a basis for defining partitions, because it can be
measured readily and is intimately tied to the mechanical prop-
erties of a tissue. For example Plewes et al. [42] showed that
partitions determined by strain imaging were as robust as those
determined by structural measurement in the identification of
breast cancer tumors. MR and ultrasound have produced full
3D reconstructions of displacement fields within tissues from
multiple slices of 2D displacement information, induced by har-
monic excitations (e.g., [43]). MR elastography is widely used
to detect tumors in the breast, prostate, liver, etc. [44]–[46].
Vascular plaques are assessed with intravascular ultrasound by
measuring vessel area change in response to applied pressure
[47], [48]. Speckle tracking echocardiography [49]–[51], so-
nomicrometry [52], cardiovascular magnetic resonance tagging
[53], and color-coded tissue Doppler echocardiography [54]
have all been used to assess regional ventricular function
through the measurement of local deformation [55]. Skeletal
muscle contraction has been characterized with sonoelastog-
raphy, which tracks internal tissue displacements following an
externally applied perturbation [56]. Full-field strain tracking
is also utilized extensively for tissue characterization for ex-
perimentation in vitro (as reviewed in [57], [58]). For example,
Nielsen and colleagues [59] built a one-of-a-kind multiaxial
tester to capture the mechanical behavior of anisotropic, het-
erogeneous tissues and verified their deformation measurement
technique on both an inhomogeneous rubber membrane and
sheep diaphragm. Regions with varied mechanical properties
were identified through a full-field strain analysis. For some
tissue types, the surface of the tissue itself may provide enough
unique texture to be tracked without the application of any
agent. However, the sample can also be textured through the
application of a paint or stain (e.g., [60]) or the dispersion of
small particles (e.g., [61]) to achieve a fine, random texture.
Additional techniques have also been developed to track sur-
face movement using the microstructure of the tissue such as
polarized light (e.g., [62]) and optical coherence tomography
[63], [64]. The success of these approaches creates an opportu-
nity for a novel, sequential strategy: the strain field can be used
first to partition the sample into regions of with homogeneous
or nearly homogeneous properties, and then it can be used as
part of an inverse method to determine those properties.
If the strain field is to be used for partitioning, the next issue

is how to implement the strain-based segmentation process
efficiently and effectively. Manual thresholding [59], [60] is
common, but an automated scheme capable of determining
partitions from a strain field would be attractive. In particular,
Wu and Leahy [65] challenge the use of thresholds in the
segmentation of MR images, suggesting instead a segmen-
tation algorithm based on graph theory. Automated image
segmentation is challenging, but significant progress has been
made (reviewed in [66]). In this work, the concept of network
clustering is adapted to the identification of mechanically
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similar regions within a heterogeneous sample based on a
measured displacement field. Two observations inform the
process: (1) the normal components of the stress tensor must
be continuous across any interface by Newton's third law, but
the deformation gradient need not be so; (2) a displacement
field represented by a finite-element grid results in a discon-
tinuous deformation gradient even if the field is smooth in the
continuous limit. Thus, the jump in the deformation gradient
across an element boundary is a measure of the local change in
material properties. Large jumps indicate the element boundary
is a good target for segmentation. In some cases, when viewing
deformation gradient field there are obvious visual choices for
boundary selection. In other cases, however, these boundaries
are less clear. Thus, a third critical observation is that the
set of finite elements and interelement deformation gradient
jumps can be analyzed using graph theory to identify optimal
subpopulations (i.e., partitions). The novelty of our approach is
combining the two separate existing methods in a new way to
create a relatively rapid, simple-to-use, automatic method for
segmenting a soft tissue from the tracking without presuming a
constitutive equation or seed points (as in the case of a random
walking algorithm). Thus, the objective of this work was to
combine betweenness based graphical analysis [67], [68] with
measured deformation gradient jumps to segment a tissue into
homogeneous subregions of different mechanical properties.

II. METHODS: ANALYSIS AND SEGMENTATION SCHEME

A. Full-Field Displacement Tracking
Accurate estimation of full-field displacements from mo-

tion capture of soft tissue deformation is crucial for tissue
segmentation. Accordingly, high-resolution digital video was
captured of various tissue equivalent and soft tissue samples
during deformation and digital image correlation was utilized to
determine full-field displacement per Raghupathy [69], [70]1.
The video was synchronized and downsampled to construct
grayscale image sequences corresponding to the loading curves
of each extension. The image of the sample before the start of
test was used as the reference configuration. Using Abaqus™
(6.11, Simulia, Inc., Providence, RI), the tissue boundary was
sketched on top of the reference image and meshed with quadri-
lateral elements. Successive pairs of images were correlated
to track the movement of the mesh throughout the loading se-
quence. Displacement fields were constructed from movement
of the mesh and smoothed to reduce noise.

B. Deformation Gradient Jump Calculations
The deformation gradient tensor at the midpoint of each el-

ement edge (Fig. 1) was calculated from the bilinear isopara-
metric representation of the displacement field. For each ele-
ment edge, the deformation gradient tensor was calculated as
follows:

(1)

1The full-field displacement tracking code is available at http://license.
umn.edu/technologies/20130022_robust-image-correlation-based-strain-calcu-
lator-for-tissue-systems. The license is free for academic users.

Fig. 1. (a) Schematic showing two finite elements indicating the midpoint of
each element edge. A deformation gradient tensor was determined for every
edge midpoint within the finite element (FE) mesh. (b) Schematic showing two
finite elements indicating their shared edge. A deformation gradient jump was
calculated for every shared edge. (c) Schematic showing two finite elements and
indicating how the FE mesh geometry is converted into a network. The defor-
mation gradient jump was utilized when weighting the network connection.

where is the initial position, is the final position,
and is the computational coordinate. The deformation gra-
dient tensor for each element edge point, , was

(2)

where is the bilinear function and is the index variable
looping through the four basis functions for a given element.
All shared edges were identified (Fig. 1), and the deformation
gradient jump was defined as the double contraction of the dif-
ference between the deformation tensors across the edge with
itself,

(3)

where elements 1 and 2 are the two elements sharing the edge k
and is the index variable looping through the four components
of the deformation gradient tensor.

C. Tissue Segmentation
The flow chart in Fig. 2 summarizes the tissue segmentation

scheme. In order to segment the tissue into homogeneous subre-
gions, the finite element geometry for a sample was converted
into an equivalent unweighted network. A network node was
created for each finite element and if two elements shared an
edge, their corresponding network nodes were considered con-
nected (Fig. 1). Once the unweighted network was constructed,
it was analyzed to determine the shortest path between each pair
of network nodes. Then, a betweenness value for each connec-
tion was determined using a breadth-first search algorithm (per
[68]). The betweenness value for a connection, as defined by
Newman [67], [68], is the number of shortest paths between
any given pair of nodes that run along that connection. If there
was more than one geodesic path joining a pair of network
nodes, then each path contributed a fractional amount to the be-
tweenness. Next, the network connection betweenness values
were multiplied by the deformation gradient jump for the cor-
responding finite element edge. Thus, the final weighted value
of betweenness for each network connection was determined
both by the sample geometry and by the deformation gradient
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Fig. 2. Flow chart summarizing tissue segmentation scheme.

jump. Following [67], [68], the network connection with the
largest value of weighted betweenness was removed. The new,
less-connected network was then reanalyzed to determine the
new set of shortest paths and the process was repeated. When
the network split into disconnected subnetworks, communities
were formed, and the network modularitywas calculated. Mod-
ularity [67] is defined to be the difference between the fraction of
connections that fall within communities and the expected value
of the same quantity if connections are assigned at random.

III. METHODS: TESTING AND APPLICATION OF THE
SEGMENTATION SCHEME

A. Simulated Experiments

To test the tissue segmentation method in silico, equibiaxial
and strip biaxial extensions were simulated using a closed-form
nonlinear fiber-based structural model (NFSM) for soft tissues
[71]. Briefly, the fiber contribution is described by a bidirec-
tional von Mises distribution, and the fiber stretch ratio is
related to the second Piola-Kirchhoff stress through an expo-
nential stress-strain law [72]. The model uses four parameters;
the direction and degree of fiber orientation and the
small-strain stiffness and nonlinearity of the fibers.
Simulation parameters were selected based on previous fits of
the NFSM to data from rat myocardium [73] and cadaveric
bladder wall [69]. For the first set of simulations, a cruci-
form sample was generated with a central triangular shaped
inclusion; the inclusion varied from the bulk sequentially in

prescribed fiber orientation ( and ,
strength of alignment ( and ,
stiffness ( kPa and kPa), and non-
linearity ( and ). For the second
set of simulations, more gradual changes were studied. First,
sample orientation was set with anisotropy vectors radially
aligned about the sample center. Next, sample anisotropy
strength, stiffness, and nonlinearity were maximized in the
center of the sample and reduced with radial distance from
the center sequentially.
Fig. 3 shows the sample geometry and anisotropy as well as
full-field deformation gradient for the equibiaxial extension
for both simulations for the condition in which the prescribed
fiber orientation was allowed to vary, (strip biaxial extension
deformation gradient fields are in the supplementary material).
Any image segmentation technique is vulnerable to reduced

performance in the presence of noise, but for our automated seg-
mentation scheme, noise in the displacement field is amplified
in the calculation of deformation gradient, making it a particular
concern. To assess the role of noise, we performed additional
calculations on the simulated data with various levels of noise
introduced into the simulated displacement field. Specifically,
the noise amplitude ranged from 0.1% to 5.0% of the maximum
displacement for the simulation involving the inclusion with
fiber alignment different from the bulk. For each noise level,
random error chosen from a uniform distribution was added to
the displacements and the sample was partitioned. If one as-
sumes an average strain of 20% on an image that is 1024 pixels
wide, the maximum displacement would be 205 pixels, so the
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Fig. 3. Fiber alignment and full-field deformation gradient tensor components for equibiaxial extension of (a) simulated sample with inclusion for which the
inclusion varies only in prescribed fiber orientation (80 vs. 20 ) and (b) simulated radially symmetric sample for which the prescribed fiber orientation varied.

error introduced would be roughly equivalent to 0.2–10 pixels.
Ten replications were performed at each noise level.

B. Experiments on Artificial and Natural Tissues
Strain tracking was performed on experimental data collected

from the following samples to provide a wide range of tissue
type, heterogeneity, nonlinearity, and anisotropy for the tissue
segmentation scheme:
• A heterogeneous polydimethysiloxane (PDMS) sample
[70],

• Two compacted collagen tissue-equivalents with different
geometries [70],

• A segment of cadaveric human aorta containing a large
plaque,

• A segment of a supraspinatus tendon, and
• A sheet of beating cardiac cells [74].
Heterogeneous PDMS: Deformation data from equibiaxial

and two strip biaxial extensions performed on a heterogeneous
PDMS cruciform, presented previously in the context of inverse
methods [69], [70], was analyzed. Briefly, a PDMS solution
(Sylgard® 184 Silicone Elastomer Kit; Dow Corning) was cre-
ated by mixing the curing agent and base (1:10). Since the clear
polymer is difficult to image, rice flour was added to opacify
the sample. The solution was poured into a custom aluminum
mold with a step in the center and was cured at room tempera-
ture overnight. The resulting sample was 2.1 mm thick except
for the central depression, which was 0.2 mm thick. The thick-
ness difference led to a compliant central region surrounded by
a stiffer outer region. Spray paint was used to texture the sample
surface for measurement of full-field displacement. The sample
was tested at room temperature on an Instron planar biaxial test
machine (Instron, Norwood, MA). A pre-load was applied (0.01
N) to each of the four arms, and the sample was preconditioned
with nine equibiaxial extension cycles (7.5% stretch). Subse-
quently, a series of mechanical tests was performed. During

testing, digital video of the textured sample surface was ob-
tained with a spatial resolution of pixels/mm. Full-field
displacement tracking was done on the equibiaxial and strip bi-
axial extensions. The Green strain, which is a direct function
of the deformation gradient, for the equibiaxial extension was
reported previously [69] and is markedly higher in the central
region of the sample. To assess the effect of mesh spacing on
the results, we performed a mesh refinement study using
to 4200 elements to discretize the sample geometry. For each
case, we determined the number of partitions needed to identify
the central depression and the accuracy of the depression area
(partitioned area vs. actual area).
Collagen Tissue-Equivalents: Deformation data from equib-

iaxial and two strip biaxial extensions performed on collagen
tissue-equivalent cruciforms, presented previously in the context
of inverse methods [69], [70], were analyzed. The samples were
created by seeding neonatal human dermal fibroblasts in a col-
lagen gel-forming solution, detailed in Raghupathy et al. [69],
[70]. Briefly, the samples were cast in cruciform-shaped Teflon
molds such that one sample had vertical arms that were twice as
wide as the horizontal, producing moderate vertical alignment
in the sample center, and the other sample had arms of equal
width, producing a large isotropic zone in the sample center. The
samples were incubated for 11 days to allow for cell-induced
contraction and remodelling of the collagen network. Prior to
biaxial testing, quantitative polarized light imaging (QPLI) was
used to quantify the localized direction and strength of fiber
alignment in each collagen tissue equivalent sample. Verhoeff's
stain was used to texture the sample surface for measurement of
full-field displacement. The sample was immersed in 1% phos-
phate buffered saline (PBS) and tested at room temperature on
a planar biaxial testing machine. Again, a pre-load was applied
(0.01 N) to each of the four arms, and the sample was precondi-
tioned with nine equibiaxial extensions (7.5% stretch), followed
by a series of extension tests. During testing, digital video of the
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textured sample surface was obtained with a spatial resolution of
pixels/mm. Full-field displacement tracking was done on

the equibiaxial and strip biaxial extensions and Green strain was
reported previously [69] for the equibiaxial extension.
Arteriosclerotic Plaque: A segment of fresh diseased tho-

racic human aorta was obtained from the Anatomy Bequest Pro-
gram at the University of Minnesota. A portion of the ascending
thoracic aorta was cut into a cruciform such that a large trans-
mural arteriosclerotic plaque resided in the central region of the
sample, and the circumferential and axial orientations of the
aorta coincided with the cruciform axes. Verhoeff's stain was
used to texture the luminal surface sample for optical strain
tracking. The textured sample was attached to a biaxial test ma-
chine and immersed in 1% PBS for the duration of the test. After
a slight preload, the sample was preconditioned with 7 equibi-
axial extensions of 15% grip strain at a rate of 3 mm/min. Fol-
lowing preconditioning, the sample underwent an equibiaxial
extension and two strip biaxial extensions of 15% grip strain.
During testing, digital video of the luminal surface of the tissue
sample was obtained at 24 fps, 1080p HD resolution and spatial
resolution of pixels/mm. Full-field displacement tracking
was done on each extension, and deformation gradient fields
are shown in the supplementary material for the equibiaxial
extension.
Supraspinatus Tendon: A whole supraspinatus tendon (SST)

specimen, one of the four tendons comprising the rotator cuff
of the shoulder, was obtained from the Anatomy Bequest Pro-
gram at the University of Minnesota and dissected per Lake et
al. [1], [2]. A portion of the SST was cut into a cruciform shape
such that the transverse and longitudinal orientations coincided
with the cruciform axes. The orientation of the sample was noted
prior to testing, and Verhoeff's stain was applied to texture the
bursal surface for optical strain tracking. The sample was at-
tached to a biaxial test machine and immersed in 1% PBS at
room temperature for the duration of testing. A pre-load was ap-
plied ( N) to each of the four arms, and the sample was pre-
conditioned with nine equibiaxial extensions (5% stretch). Sub-
sequently, a series of mechanical tests was performed. During
testing, digital video of the textured sample surface was ob-
tained with a spatial resolution of pixels/mm. Full-field
displacement tracking was done on the equibiaxial and strip bi-
axial extensions (deformation gradient fields for equibiaxial ex-
tension are in the supplementary material).
Beating Cardiac Sheet: We analyzed the motion of a beating

cardiac tissue model using video generously provided by the
Healy Group at the University of California, Berkley. Their
methods are described elsewhere [74] and are summarized here.
Cardiomyocytes were differentiated from healthy human iPS
cells per the small molecule WNT-mediated protocol devel-
oped by Lian et al. [75]. Single cells were seeded and grown
as a monolayer in defined mTeSR1 medium on Matrigel-coated
plates at C and 5% carbon dioxide. The cardiomyocytes
formed spontaneously contracting sheets (without pacing) of
cells 10 days after the WNT-mediated differentiation protocol.
A video of the cells was obtained for multiple beats with a
spatial resolution of pixels/ m. Full-field displacement
tracking was done on grayscale images of the deformation from
three successive beats.

IV. RESULTS

A. Simulated Experiments
Full-field displacement was determined for both simulations

for all conditions. For brevity, results are presented only for
the simulation of the sample containing the inclusion with fiber
alignment different from the bulk (

and the radially symmetric sample with varied alignment
(results from other simulations are provided in the supplemen-
tary material). Fig. 4(a) and d show the sum of the normalized
deformation gradient jumps from all three extensions (equibi-
axial, vertical strip biaxial, and horizontal strip biaxial) for each
simulation. For the sample containing the inclusion, the inclu-
sion boundary can be determined visually from the sum of the
deformation gradient jumps alone. For the radially symmetric
sample, however, the boundaries are not obvious from the sum
of the normalized deformation gradient jumps alone. The parti-
tions are overlaid on each sample in Fig. 4(b) and e with vectors
representing the prescribed fiber orientation. All simulations in-
volving the sample containing the inclusion identified the inclu-
sion as a separate material (supplementary material). The parti-
tions determined for the simulated sample with radial symmetry
of prescribed fiber orientation show a distinct pinwheel-shaped
pattern at the sample center. Similarly, all the simulations in-
volving the radially symmetric sample created a circular pat-
tern of partitions at the sample center (supplementary material).
Fig. 4(c) and f shows the modularity for the partitioning scheme
as a function of the connections removed. The scheme was al-
lowed to continue until 400 connections were removed and the
modularity at which communities formed were recorded. While
step changes in modularity do correspond with cluster forma-
tion, there is no consistent range of modularity values at which
the manually determined optimal number of clusters is formed.
Fig. 6 shows the inclusion area error as a function of added
noise. The errors in the calculated inclusion error vs. the real
inclusion area that resulted were averaged over 10 replicates for
each noise level. In all cases, the true inclusion area was encom-
passed by that determined by the segmentation scheme. The in-
clusion area was identified perfectly for all noise levels of 1%
or less.

B. Experiments on Artificial and Natural Tissues
Heterogeneous PDMS: The sum of the normalized defor-

mation gradient jumps for the three extensions (equibiaxial,
vertical strip biaxial, and horizontal strip biaxial) and the
partitions resulting from the automatic segmentation scheme
for the PDMS sample are shown in Fig. 5. It is readily ap-
parent from Fig. 5(a) that the 3-D nature of the modification
and the deformation leads to a thick ring of high deformation
gradient jumps around the compliant central region rather than
a sharp, well-defined boundary as would occur in a purely
2-D experiment. The partitioning scheme immediately and
compellingly identified the compliant central region of the
sample, Fig. 5(b). Fig. 5(c) shows the modularity for the par-
titioning scheme as connections are removed. For this sample,
we stopped the partitioning scheme after two communities had
been formed.
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Fig. 4. Sum of normalized deformation gradient jumps for all three extensions for the simulated sample containing the inclusion with fiber alignment different from
the bulk (a) and for the radially aligned simulated sample with varied fiber alignment (d). Partitions, overlaid on sample geometry
with prescribed fiber alignment indicated by vectors, identified inclusion (b) and radial symmetry (e), respectively. Modularity as a function of connections removed
for both the simulated sample containing the inclusion (c) and the radially aligned simulated sample (f). Blue dots indicate values when a connection is removed,
open red circles indicate when a community is formed, and the green star mark when the final community formed.

Fig. 5. (a) Sum of normalized deformation gradient jumps for all three extensions for the heterogeneous PDMS sample. (b) Partitions, overlaid on sample geom-
etry, strongly mirror sample heterogeneity. (c) Modularity as a function of connections removed. Blue dots indicate values when a connection is removed and the
green star mark when the final community formed.

Results from the mesh refinement study are shown in Fig. 7.
For very coarse and very finemeshes, the image correlation soft-
ware did not converge, so no data could be generated. Formeshes
with elements, however, partitions were obtained.
Ideally, only two partitions should be needed to describe the
sample geometry: one partition for the central depression and
one for the outer area.As can be seen in Fig. 7(a), for at least 1800
elements, the algorithm was able to identify the more compliant

central region using 2 or 3 partitions, one for the central region
and one or two in the outer part of the sample. The central region
was captured poorly by the coarse meshes (Fig. 7(b)), with the
central partition too large compared to the actual size of the de-
pression. As the mesh was refined, the central partition became
more accurate and tended to be slightly smaller than the central
depression, perhaps because of the 3D effects near the rim.
This error decreased as the mesh was further refined.



36 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 1, JANUARY 2016

Fig. 6. Effect of noise on identification of an inclusion. As the noise level in-
creased, the size of the partition associated with the inclusion increased as well.
There was no error in the calculation for noise levels of 1% or less. Each point
is the average standard deviation of ten replications.

Fig. 7. Effect of mesh refinement on identification of the depression area. (a)
Number of partitions necessary to capture central depression. (b) Total depres-
sion area determined by partitioning scheme for meshes of various sizes.

Collagen Tissue-Equivalents: Fig. 8(a) and (d) show the sum
of the normalized deformation gradient jumps from all three
extensions for both the collagen tissue-equivalent sample with
arms of equal width and the sample with vertical arms twice as
wide as horizontal arms. Note how in comparison to the PDMS

sample, the graph showing the sum of the normalized deforma-
tion gradient jumps no longer gives obvious visual cues of par-
tition boundaries. Quantitative polarized light imaging results
indicating fiber alignment degree (contour and length of vector)
and direction (vector orientation) are shown in Fig. 8(b) and
(e), with the partitioning results overlaid. For the equal arm
sample, the large isotropic central area is well-identified as are
the strongly-aligned arms. In addition, there is preferential par-
titioning along the edges of the central region, which exhib-
ited strong off-axis alignment. The partitioning scheme was al-
lowed to generate more communities for the sample with un-
equal arms as a result of its more complex alignment field. In
this case, the scheme had some difficulty identifying the two
isotropic zones present away from the center and towards the
smaller arms. However, a large partition was placed within the
moderately aligned sample center, and preferential partitioning
was present along the edges of the sample that exhibited strong
off-axis alignment. Fig. 8(c) and (f) show the modularity for the
partitioning scheme as connections are removed.
Arteriosclerotic Plaque: The sum of the normalized defor-

mation gradient jumps from all three extensions for the sample
containing the large arteriosclerotic transmural plaque is shown
in Fig. 9(a). The partitioning results are overlaid on an image of
the intimal surface sample taken prior to testing in which visible
location of the plaque was noted, arrow in Fig. 9(b). The sample
was segmented into 10 separate partitions. Of the resulting par-
titions, one encompasses the plaque with little extraneous tissue.
In addition, other partitions seem to identify visually similar re-
gions of the tissue. Fig. 9(c) shows the modularity for the parti-
tioning scheme as connections are removed.
Supraspinatus Tendon: The sum of the normalized deforma-

tion gradient jumps from all three extensions are shown for the
SST sample in Fig. 10(a). The partitioning results are overlaid
on an image of the bursal surface of the sample taken immedi-
ately prior to testing, Fig. 10(b). The sample was segmented into
9 separate partitions. Partitions agree with previous results [1],
[2] suggesting significant mechanical and organizational hetero-
geneity including horizontal banding along the anterior-poste-
rior axis and increased vertical banding towards the humeral
insertion. Fig. 10(c) shows the modularity for the partitioning
scheme as connections are removed.
Beating Cardiac Sheet: The sum of the normalized defor-

mation gradient jumps from three beats of the spontaneously
beating cardiac sheet are shown overlaid on an image of the
cardiac sheet taken immediately prior to beat one, Fig. 11(a).
The partitioning results, Fig. 11(b), are overlaid on the max-
imum displacement field for beat 1 of the cardiac sheet. The
partitions each contain regions of cells that were visually iden-
tified by our collaborator Dr. P. Loskill of the Healy Group as
beating in unison- both in terms of the magnitude and phase.
Fig. 11(c) shows the modularity for the partitioning scheme as
connections are removed.

V. DISCUSSION

The tissue segmentation routine determined both the loca-
tion and size of different materials within a single sample based
solely on displacement tracking results for simulated samples,



WITZENBURG et al.: AUTOMATIC SEGMENTATION OF MECHANICALLY INHOMOGENEOUS TISSUES BASED ON DEFORMATION GRADIENT JUMP 37

Fig. 8. Sum of normalized deformation gradient jumps for all three extensions for both the equal (a) and unequal (d) arm collagen cruciform samples. Partitions
are overlaid on the QPLI for both the equal (b) and unequal (e) arm collagen cruciform samples. The modularity for both the equal (c) and unequal (f) arm collagen
cruciform samples, respectively. Blue dots indicate values when a connection is removed, open red circles indicate when a community is formed, and the green
star mark when the final community was allowed to form.

Fig. 9. (a) Sum of normalized deformation gradient jumps for all three extensions for the aortic sample containing a large arteriosclerotic transmural plaque. (b)
Partitions are overlaid on an image of the sample taken prior to testing in which the plaque was identified. (c) The modularity as a function of connections removed.
Blue dots indicate values when a connection is removed, open red circles indicate when a community is formed, and the green star mark when the final community
was allowed to form.

tissue equivalents, and native tissue. It was able to capture re-
gional changes in tissue properties due to pathology, as in the
case of the sample containing the large transmural plaque, and
natural variation, as in the case of the SST, and was able to
describe heterogeneous cell contraction in a cardiac sheet. Al-
though the modularity tended to jump when a new partition
was formed, we did not find it to be a useful metric to de-
termine the optimal stopping point of the clustering scheme
as has been found previously [67]. While the stopping metric
did not always suspend partitioning at the time point in agree-
ment with manual partitions, community formation typically

identified regions of interest early in the partitioning process
(e.g., PDMS sample). Therefore, if one is subsequently ana-
lyzing the mechanical properties, an overpartitioned material
should give similar mechanics between adjacent regions. Alter-
native stopping metrics are a potential area of improvement for
the algorithm.
Separately, there is our choice of a betweenness based algo-

rithm, which is but one of many options. The random walker
algorithm [76], for example, is generally faster than between-
ness-based segmentation and has clear stopping criteria but re-
quires user-defined seed points within each partition to be iden-
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Fig. 10. (a) Sum of normalized deformation gradient jumps for all three extensions for the SST sample. (b) Partitions are overlaid on an image of the sample taken
immediately prior to testing. (c) The modularity as a function of connections removed. Blue dots indicate values when a connection is removed, open red circles
indicate when a community is formed, and the green star mark when the final community was allowed to form.

Fig. 11. (a) Sum of normalized deformation gradient jumps for all three beats of the cardiac sheet. (b) Partitions are overlaid on an image of the sample taken
immediately prior to beat 1 with the principal strain indicated by pink vectors. (c) The modularity as a function of connections removed. Blue dots indicate values
when a connection is removed, open red circles indicate when a community is formed, and the green star mark when the final community was allowed to form.

tified a priori. We explored a random walker scheme, but found
that it required an unacceptably large number of seed points. For
the simulated experiment with the sample containing the inclu-
sion, 12 seed points were required (8 in the bulk and 4 in the
inclusion) to identify the inclusion properly. Additionally, seg-
mentation was very sensitive to the location of each seed point,
yielding poor results when seed points were close to one an-
other. Therefore, in this context a random walker may be useful
to finalize or refine segmentation boundaries but does not ap-
pear to be an acceptable stand-alone scheme.
Both the segmentation process and displacement tracking it-

self are limited by the speckling technique used to texture the
sample surface. The coarseness of the FE mesh is dictated by
the speckling technique and in turn affects the size and shape
of the partitions formed. When the sample surface is discretized
into finite elements, theymust contain regions with a unique tex-
ture in order for DIC to capture surface deformation accurately.
The finer a texture is applied to the sample surface, the more
refined the mesh can be and therefore the more detailed the dis-
placement tracking and partitioning. In a mesh refinement study
(Fig. 7), we found that the performance of the method, in terms
of ability to capture a region known to have different properties,
improved with mesh refinement. When the mesh becomes too
refined relative to the resolution of the image correlation code,

however, noise effects pollute the results. Tracking techniques
based on inherent image texture [77], measured fiber alignment
[62], [78], [79], or natural speckle in an ultrasound image [80],
[81] can all provide the potential for better resolution.
Noise in the displacement field is particularly troublesome

to the automated segmentation scheme presented because noise
error is amplified in the calculation of deformation gradient.
In the noise assessment study, when noise was added to dis-
placements from simulated experiments (Fig. 6), it was deter-
mined that noise levels less than 1% did not affect partitioning
choices. For example, if one assumes an average strain of 20%
on an image that is 1024 pixels wide, then 1% of maximum dis-
placement would be 2.0 pixels, which is well above the normal
error levels (typically pixels) for the strain-tracking algo-
rithm used. Therefore, even though in the automated segmen-
tation scheme noise in the displacement field is amplified in
the calculation of deformation gradient the method can tolerate
relatively high levels of noise. It must also be recognized that
smoothing the displacement field, which is almost always nec-
essary in DIC-basedmethods, intrinsically reduces any jumps in
the deformation gradient and could reduce the effectiveness of
the segmentation scheme. While we used a full-field displace-
ment tracking code developed by Raghupathy et al. [69], [70],
any displacement tracking scheme could be used with the au-
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tomatic segmentation presented, and we would expect similar
performance and noise sensitivity.2
In applying inverse methods and complicated constitutive

equations to heterogeneous tissues, a major stumbling block
is the segmentation of the tissue into discrete homogenous
zones. Many inverse methods (e.g., [28], [30], [33], [60],
[82]–[85]), which are applied to soft tissues employ full-field
displacement measurements from more than one homogenous
loading condition, providing information that can help guide
the partitioning process. The jump in the deformation gradient
across a finite element boundary is a measure of the local
change in material properties. Our method takes advantage of
the displacement data by applying a betweenness-based graph
theory to the deformation gradient to identify mechanically
similar regions within a heterogeneous sample, and it has the
advantage of segmenting the same finite element mesh that
will be used for the inverse calculation. We also note that the
approach could, in principle, be applied to any finite element
mesh, such as one might obtain from a thermal map of a tissue
[86], [87] (using the jump in temperature gradient), and that
although only two-dimensional fields were analyzed in the
current work, three-dimensional data could be segmented via
the same algorithm.
Nondestructive structural characterization (i.e., polarized

light, small angle light scattering, optical coherence tomog-
raphy, etc.) of heterogeneous tissues is not feasible for many
tissue types. In addition, it is often the tissues with unique
heterogeneity, such as those that are damaged or diseased
which are of particular interest. Thus, studies on the mechanical
properties of soft tissues that consider regional variability and
often involve cutting multiple samples from a single intact
tissue specimen present a dilemma: without a priori knowledge
of regional variability, how should the sample be cut? The
proposed method suggests instead mechanically testing the
entire specimen and applying the automated computational
dissection routine to the full-field deformation after testing.
Thus, dissection is done computationally rather than physically,
allowing for the study of tissues with unknown heterogeneity.
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