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A nonlinear anisotropic inverse method for computational dissection of 
inhomogeneous planar tissues

Colleen M. Witzenburga and Victor H. Barocasb

aDepartment of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA; bDepartment of Biomedical Engineering, University of 
Minnesota, Minneapolis, MN, USA

ABSTRACT
Quantification of the mechanical behavior of soft tissues is challenging due to their anisotropic, 
heterogeneous, and nonlinear nature. We present a method for the ‘computational dissection’ 
of a tissue, by which we mean the use of computational tools both to identify and to analyze 
regions within a tissue sample that have different mechanical properties. The approach employs 
an inverse technique applied to a series of planar biaxial experimental protocols. The aggregated 
data from multiple protocols provide the basis for (1) segmentation of the tissue into regions 
of similar properties, (2) linear analysis for the small-strain behavior, assuming uniform, linear, 
anisotropic behavior within each region, (3) subsequent nonlinear analysis following each individual 
experimental protocol path and using local linear properties, and (4) construction of a strain energy 
data set W(E) at every point in the material by integrating the differential stress–strain functions 
along each strain path. The approach has been applied to simulated data and captures not only the 
general nonlinear behavior but also the regional differences introduced into the simulated tissue 
sample.

Introduction

Soft tissues (e.g. tendons, ligaments, articular cartilage, 
muscle, blood vessels, heart valve leaflets, etc.) are essential 
for function as they provide support and protection as well 
as transmitting forces throughout the body. The mechan-
ical behavior of soft tissues is fundamentally linked to 
their composition, in particular to the concentration and 
arrangement of the structural extracellular constituents 
(e.g. collagen, elastin, proteoglycans). In general, soft tis-
sues exhibit directional-dependent behavior that corre-
lates strongly with the anisotropic arrangement of their 
fibrous extracellular matrix. Soft tissues are often inhomo-
geneous. The presence and proportions of the structural 
extracellular constituents as well as their arrangement 
and alignment vary locally, causing regional differences 
in both anisotropy and stiffness. The heterogeneous nature 
of soft tissues becomes particularly evident at insertion or 
connection points (Thomopoulos et al. 2006) and in cases 
of disease or injury. Finally, their stress–strain behavior 
is often strongly nonlinear, particularly at the high strain 
levels that occur physiologically. The intrinsic complexity 

of soft tissues thus presents a tremendous challenge in 
constitutive modeling.

There have been many studies aimed at quantifying the 
properties of soft tissues. Elastography has become a major 
focus for medical imaging (Ophir et al. 1996; Greenleaf  
et al. 2003; Ehman et al. 2012) as it has the potential to pro-
vide in vivo information. In static elastography, the tissue is 
compressed or elongated slowly, and the distribution of its 
displacement is captured (e.g. with MR, ultrasound, acous-
tic or optically) and interpreted. Dynamic elastography 
involves the application of time-harmonic motion. MR and 
ultrasound have produced full 3D reconstructions of dis-
placement fields within tissues from multiple slices of 2D 
displacement information, induced by harmonic excita-
tions and are widely used to detect tumors in the breast, 
prostate, liver, etc. (Manduca et al. 2001; Sinkus et al. 2008; 
Perumpail et al. 2012). Though they assumed isotropy, the 
nonlinear inverse elasticity method of Oberai, Barbone, 
and colleagues (Gokhale et al. 2008; Goenezen et al. 2011; 
Goenezen et al. 2012; Tyagi et al. 2014) is perhaps the most 
compelling at determining heterogeneity. In their study 

KEYWORDS
Biaxial testing; biomechanics; 
elastography; heterogeneity; 
subdomain

ARTICLE HISTORY
Received 5 September 2015 
Accepted 5 April 2016

© 2016 Informa UK Limited, trading as Taylor & Francis Group

CONTACT  Victor H. Barocas   baroc001@umn.edu
 T he supplementary material for this paper is available online at http://dx.doi.org.10.1080/10255842.2016.1176154.

mailto:baroc001@umn.edu
http://www.tandfonline.com


2    C. M. Witzenburg and V. H. Barocas

Inflation (Schulze-Bauer et al. 2002; Saravanan et al. 
2006; Boyce et al. 2008) is often a more realistic loading 
modality. The inverse method proposed by Seshaiyer and 
Humphrey (2003) incorporates nonlinearity, anisotropy, 
and heterogeneity but requires a fully integrated finite ele-
ment model. Seshaiyer utilized the principle of virtual work 
and a computationally demanding Marquardt–Levenberg 
regression scheme to determine the best-fit values of the 
material parameters. The method was utilized success-
fully in the quantification of the material properties of the 
lens capsule (Pedrigi et al. 2007) but was limited to small 
regions of interest within the tissue. Kroon and Holzapfel 
(2008) propose an alternative inverse method, which ena-
bled the investigation of the distribution of anisotropic 
material properties. A pointwise identification method for 
the determination of heterogeneous, nonlinear properties 
of cerebral aneurysms was proposed (Lu & Zhao 2009), 
validated (Zhao et al. 2009), and applied to patient specific 
geometries (Zhao et al. 2011) by Lu and Zhao. Though 
inflation is often the most physiologic testing mode, it must 
be applied globally to a tissue specimen. As such, it is diffi-
cult to interrogate a region of the tissue under a wide range 
of strain states and in particular to shear the tissue, and the 
material constants determined are often only applicable for 
the strain state studied.

Planar extension allows for the investigation of the 
multiaxial behavior of the tissue and the introduction 
of shear. Soft tissues, however, often have an inelastic 
response, exhibiting hysteresis between the loading and 
unloading stress–strain behavior. If material behavior 
from multiple loading configurations is to be combined 
properly, some form of preconditioning must be applied 
such that pseudo-elasticity can be reasonably applied. 
Nielsen and colleagues (Malcolm et al. 2002; Nielsen  
et al. 2002) built a one-of-a-kind multiaxial tester to cap-
ture the mechanical behavior of anisotropic, heterogene-
ous tissues and verified their deformation measurement 
technique on an inhomogeneous rubber membrane and 
on a sheep diaphragm. In more recent work by the same 
group (Flynn et al. 2011; Flynn et al. 2013), multiple load-
ing configurations encompassing both indentation and 
shear were used to investigate the properties of skin. The 
Tong and Fung model was fit to the data (errors ranging 
from ~13 to 22%), but the heterogeneity of the tissue was 
not investigated. Flynn et al. (1998) present an elegant 
inverse method to determine anisotropic, nonlinear prop-
erties of planar soft tissues subjected to a variety of biaxial 
loading conditions that encompass both tension and shear. 
They utilize the tangent stiffness along with an incremen-
tal force-displacement approach to capture the nonlin-
ear behavior of the tissue. The main drawback of Flynn’s 
approach is the need to test multiple specimens from 
different physical locations to investigate heterogeneity. 

of breast cancer tumors, the size, shape, and location of 
regions within a tissue sample with varying shear moduli 
were identified with exceptional clarity. While traditionally 
non-invasive imaging-based approaches assume linear, 
isotropic material behavior, they are beginning to be used 
to estimate anisotropic properties. For example, Tweten 
et al. 2015 developed a method using MR elastography to 
quantify the material properties of transversely isotropic 
soft tissue using shear waves with specific polarization and 
propagation directions. The same group also developed 
an extended local frequency estimation inversion scheme 
for anisotropic materials (Clayton et al. 2013). However, 
in both cases though the material is anisotropic, the fiber 
direction must be known a priori.

Typically, tissues are tested mechanically in vitro 
using indentation, inflation, and/or biaxial tension. 
Indentation has been applied to determine heteroge-
neity through its controlled and repeated application. 
Most indentation-based methods assume linearity 
(infinitesimal deformation) and isotropy, but a few have 
been modified to account for the anisotropic, nonlinear 
behavior strongly exhibited by soft tissues. For exam-
ple, utilizing atomic force microscopy, Costa and Yin 
(1999) investigated the effects of indenter geometry, 
nonlinear material behavior, and large deformations 
on soft tissues locally, gathering in-depth informa-
tion regarding tissue heterogeneity, but they did not 
include anisotropy in their analysis. Cox et al. (2008), 
developed an indentation method capable of captur-
ing anisotropy by combining force and deformation 
gradient data (captured through an inverted confocal 
microscope). They utilized repeated indentation to 
quantify the inhomogeneous nature of the heart valve 
leaflet (Cox et al. 2010), which they coupled with 
inverse finite element analysis using a mixed numer-
ical approach to determine local material properties. 
Nonlinearity was incorporated using the constitutive 
framework of Holzapfel et al. (2000). Chai et al. (2013) 
and Chai et al. (2014) further utilized the methods of 
Cox to characterize the heterogeneous properties of 
atherosclerotic plaques, focusing on the drastic differ-
ences in the material properties of the various plaque 
components using a sophisticated inverse finite ele-
ment method. Other approaches for extracting aniso-
tropic material properties via indentation involve the 
use of simultaneous indentation and stretch (Karduna  
et al. 1997) and an indenter with asymmetric geometry 
(Bischoff 2004). Nonlinearity is typically incorporated 
numerically, but has also been incorporated analytically 
as per Humphrey et al. (1991). Although indentation is 
attractive in that it can be applied to a tissue specimen 
locally in a controlled and repeatable manner, it is less 
relevant to in vivo function for many tissues.
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Uniaxial and biaxial testing has been completed on small 
samples cut from different sections of myocardium 
(Demer & Yin 1983; Sacks & Chuong 1993; Novak et al. 
1994; Ghaemi et al. 2009), supraspinatus tendon (Huang 
et al. 2005; Lake et al. 2009, 2010; Szczesny et al. 2012), 
and aorta (Sokolis et al. 2008; Pasta et al. 2012) to deter-
mine regional variation. While this approach has yielded 
valuable information, again it is hindered by dissection 
damage, minimal testable sample size, and the need to 
treat each individual sample as homogeneous.

In addition to the experimental challenges, the complex 
structure and mechanical behavior of soft tissues make 
selecting, applying, and fitting an appropriate constitu-
tive relation difficult. There are many prominent strain 
energy functions which have been developed to capture 
both the anisotropy and nonlinearity of various soft tissues 
including Fung-type, neo-Hookean, Mooney–Rivlin, and 
Ogden relations (Fung 1993; Holzapfel 2000; Humphrey 
2002). Selecting (or in some cases developing) an appro-
priate constitutive relation is not trivial. Humphrey (1999) 
compared various relations by applying them to the same 
data set and found that they strongly differed (sometimes 
reversed) in their descriptions of the tissue in terms of 
both stiffness and anisotropy, reinforcing the idea that 
even highly successful constitutive relations are limited 
in their predictive capabilities. This concern led to a key 
principle of our inverse approach: instead of selecting a 
strain energy function and fitting the material parame-
ters to experimental data, one can use experimental data 
directly to determine the strain energy function.

In our previous work (Raghupathy & Barocas 2010; 
Raghupathy et al. 2011), we presented the Generalized 
Anisotropic Inverse Mechanics (GAIM) method to 
determine the material properties of anisotropic, heter-
ogeneous, linear soft tissues. GAIM uses the measured 
displacement field over the entire sample as well as the 
traction forces on the sample boundary to solve the 
Cauchy stress balance directly for the unknown compo-
nents of a general linear elasticity tensor. Heterogeneity is 
managed using a subdomain technique; the sample area 
is segmented into many partitions, each assumed to have 
uniform properties. In this way, the method is capable 
of determining the distribution of material parameters, 
that is how stiffness and anisotropy change from region to 
region and whether these changes are drastic and abrupt 
or more gradual. The linear constitutive equation was 
replaced with a neo-Hookean form (Witzenburg et al. 
2012) to accommodate the large-deformation kinematics 
exhibited by many soft tissues, but the base assumption 
of linear kinetics remained a serious weakness.

One possible approach to tissue nonlinearity would be 
to replace the neo-Hookean constitutive law with a high-
er-order constitutive equation. For example, Tonuk and 

Silver-Thorn (2003) fit their experimental results using a 
James–Green–Simpson nonlinear elastic material model. 
The use of high-order constitutive equations however, typ-
ically requires additional assumptions about the material 
(isotropy and homogeneity in the case of Tönük and 
Silver-Thorn) lest a prohibitive number of independent 
material coefficients arise. Our preference is to maintain 
the maximum amount of flexibility in the constitutive 
form. In addition, the complexity of the relation increases 
computation time, sacrificing the tremendous efficiency 
advantage that comes from the constitutive law being 
linear with respect to the model parameters. Therefore, 
while still accounting for the nonlinear kinematics of the 
deformation as a whole, we approach the problem by con-
sidering the mechanical behavior of the tissue in linear 
increments.

Although the inverse techniques discussed have proven 
successful in many cases, the Nonlinear Generalized 
Anisotropic Inverse Mechanics (NGAIM) method pro-
posed here addresses appreciable gaps in current com-
bined capability. The NGAIM method is capable of (1) 
characterizing anisotropic materials, (2) considering 
the heterogeneous nature of the tissue, (3) incorporat-
ing behavior from many physiologically relevant biaxial 
loading modalities, (4) accounting for both the nonlin-
ear kinetics and kinematics of soft tissues, and (5) per-
forming without the high computational cost associated 
with repeated forward solutions. In addition, NGAIM 
addresses the full behavior of the material, solving for 
the full-field stress and full-field strain energy within the 
tissue sample.

Methods

Overall strategy

The novelty of the GAIM method was to solve the weak 
form of the Cauchy stress balance directly for the mechan-
ical properties of the tissue rather than guessing a set of 
parameters, performing repeated forward solves, and 
iterating to determine the best parameter values. While 
GAIM was capable of describing heterogeneous, ani-
sotropic materials it assumed linearity. Following the 
historical approach of linearization (Hughes & Pister 
1978; Ogden 1984), we chose to capitalize on GAIM 
by applying it in a stepwise manner in order to capture 
the behavior of nonlinear materials. Again, the full-field 
displacement and boundary traction information from 
multiple biaxial extensions was needed. Due to the chang-
ing reference configuration, the initial step (small strain) 
and the following steps (large strain) are handled differ-
ently. However, the material descriptions from each step 
of each experimental protocol (as described below) are 
eventually combined to generate a six-dimensional point 
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via digital image correlation (DIC) as described elsewhere 
(Raghupathy 2011). Finally, nodal displacements and arm 
forces would be extracted from the raw data and step size 
would be determined. The determination of step size is an 
important consideration (detailed in Appendix 1) because 
large steps lose linearity but small steps are more vulner-
able to noise effects.

The analysis process is completed in three phases:
(i) � small-strain analysis of the early stages of all 

experimental protocols was done simultaneously,
(ii) � large-strain analysis was done following each in-

dividual experimental protocol path, and
(iii) � an elemental strain energy density data set was 

generated.
Figure 1(b) shows a schematic of the process; for clarity, 

only the normal force on a single arm is shown and the 
step size is exaggerated. A detailed example illustrating 
the method on a simulated sample is given in the supple-
mentary material.

(i) Small-strain analysis of all experimental 
protocols simultaneously

For the first step (Figure 1(b-(i))), the raw displacement 
and force data from all loading protocols were combined 
per our previous neo-Hookean approach (Witzenburg  
et al. 2012), creating a general, anisotropic, inhomogene-
ous linear model of the material behavior at small strain. 
Partitioning the sample into homogenous subdomains, 
one of the most difficult obstacles in applying GAIM, 
was done by identifying deformation gradient jumps 
within the sample under symmetric loading conditions 
(Witzenburg et al. 2016). As described by (Raghupathy & 
Barocas 2010) elements are grouped into homogeneous 
subdomains to ensure that the inverse problem is well-
posed. Then, following (Witzenburg, et al. 2012), the force 
and displacement data for the first step from all 15 exten-
sions were considered simultaneously, and an analogous 
neo-Hookean generalization of the linear elasticity tensor, 
K, was determined for each subdomain such that the sec-
ond Piola–Kirchhoff (PK2) stress, S, was defined by

 

where E is the Green strain, and K is constant over each 
partition. K was determined by solving the Cauchy stress 
balance

 

where F is the deformation gradient tensor and differen-
tiation is with respect to the undeformed coordinates. In 
Equation (2), F and E are known from the DIC, allow-
ing K to be determined directly. Following the Galerkin 

(1)Sij = KijklEkl

(2)
(
FmiKijklEkl ,

)
j
= 0

cloud of stress–strain data for every sample subregion. 
Accordingly, any strain-energy density function could 
then be independently fit quickly and easily to each sub-
region, thereby fully characterizing its behavior.

The process begins with data generated from an exten-
sive biaxial loading protocol. The more and varied the 
loading protocol, the wider the region of strain-space 
investigated for each location in the sample. For a biaxial 
test, each arm can be extended independently, leading to 
the 15 permutations shown in Figure 1(a); while this com-
bination of experimental protocols is by no means exhaus-
tive (e.g. a 2:1 ratio of stretch in the two directions could 
also be performed, Vande Geest et al. 2006), it provides a 
broad range of deformations. For the current study, the 15 
protocols in Figure 1(a) were simulated. Shear in the arms 
and central region of the sample was achieved through the 
asymmetric stretches. The experimental procedure would 
be in the following form. Both the normal and shear forces 
at the grip would be measured by six-degree-of-freedom 
load cells (JR3 Inc.). During each extension, a video of the 
sample surface would provide the full-field deformation 

Figure 1.  Schematic of method. (a) A set of different biaxial 
experimental protocols is performed on the sample, providing 
the displacement fields and grip forces. (b) The analysis includes 
the following steps: (i) Combined data from all of the protocols 
at small-strain (black segments in grip force vs. grip strain plots) 
are used to specify a small-strain model using our previous linear 
approach (Witzenburg et al. 2012). (ii) Data from each individual 
protocol at larger strain (colored segments in grip force vs. grip 
strain plots) are used to generate a piecewise linear model for the 
protocol’s strain path. (iii) The models are used to calculate the 
PK2 stress at each strain value for each experimental protocol. 
The PK2 stress is integrated along each strain path to generate 
the strain energy density value at each strain value. Calculations 
for the small strain model are by partition, determined using the 
deformation field per (Witzenburg et al. 2016), and those in the 
piecewise linear models are by element, so the strain energy 
density data set is obtained for each element.
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what extension is about to be imposed. In other words, 
because the initial state for the first step of any protocol is 
the tissue’s undeformed state, all experimental protocols 
can be analyzed simultaneously for their first step. At the 
end of step 1 and thus the beginning of step 2, however, 
the point has moved, and the location of the point is thus 
dependent on which loading protocol is being imposed. 
The reference configuration for the second step is not 
the same for all protocols. The rationale for the exten-
sive loading scheme is to ensure that the inverse problem 
is well-posed because it is not possible to determine the 
material characteristics of a subdomain within the sample 
without interrogating it under various loading conditions. 
If GAIM were applied in a stepwise fashion, however, it 
would no longer be sound to apply the displacement fields 
and reaction forces from the protocols concurrently. Flynn 
et al. (1998) addressed this issue elegantly by means of an 
extensive incremental loading paradigm that allowed for 
the establishment of multiple reference configurations. 
Flynn’s technique was highly effective for their homoge-
neous samples, but it required a 3-fold increase in the 
number of loading cycles applied to the tissue (increasing 
their loading scheme from 4 cycles to 12 cycles). Given the 
larger number of 15 loading cycles required to probe the 
heterogeneous tissues of interest to us, we have selected to 
consider all subsequent steps in each protocol separately.

The creation of a separate inverse problem for each 
experimental protocol changes the nature of the problem: 
the initial NGAIM step is overdetermined due to the large 
number of loading protocols and the relatively small num-
ber of partitions; subsequent steps are underdetermined 
since each element and loading protocol are evaluated 
separately. Unfortunately, the grouping of elements into 
the deformation gradient-jump determined subregions no 
longer ensures that each much smaller system of equations 
is overdetermined. Thus, rather than grouping these sub-
regions into even larger partitions each element within 
the sample domain was considered a separate material. 
An alternative additional constraint must therefore be 
imposed on the matrix problem to achieve well-posed-
ness. We chose to require that K satisfy the discrete stress 
balance and vary least from the K tensor determined for 
the previous step. The differential PK2 stress, �, for step 
n is equal to

 

where � (differential neo-Hookean elasticity tensor) and 
� (differential Green strain) are relative to the sample con-
figuration at the end of step n − 1. The differential stresses 
are additive, meaning that

 

(4)�
n
ij = �

n
ijkl�

n
ij

(5)
SNij =

N∑
n=1

�
n
ij

finite element method, the weak form of Equation (2) for 
a sample with undeformed domain Ω0 and boundary Γ0 
is (Raghupathy & Barocas 2010)

 

where NA are the Galerkin basis functions at node A of the 
finite element, ti is the traction vector, and the summation 
is over all elements, e. The force on each grip arm is the 
total force over the sample boundary, allowing evaluation 
of the traction integral.

(ii) Large-strain analysis following each individual 
experimental protocol path

For larger strains (Figure 1(b-(ii))), data from each indi-
vidual protocol were used to generate a piecewise linear 
model of the material in the element following the proto-
col’s experimental strain path. It would be attractive sim-
ply to continue to apply GAIM to all steps in the same 
manner, but as Flynn et al. (1998) noted, there is an issue 
with reference configuration. Consider a point within 
the material. At the beginning of step 1, the sample is 
undeformed, and this point is in the same state no matter 

(3)
�
e

⎛⎜⎜⎝∫Γe
0

tiNAdΓ
e
0

⎞⎟⎟⎠
=
�
e

⎛⎜⎜⎝∫Ωe
0

FimKmjqrEqrNA,jdΩ
e
0

⎞⎟⎟⎠

Figure 2.  Fiber alignment for the simulated sample with an 
inclusion oriented at a different angle (�

inclusion
= 80

°) than the 
majority of the sample (� = 20

°). In addition, elements selected 
for further analysis (an element within the inclusion and an 
element just outside the inclusion) are highlighted. Simulation 
parameters, strength of alignment (� = 1.5), stiffness (A = 5 kPa), 
and nonlinearity (B = 12), were set to match fits of the closed-
form nonlinear fiber-based structural model to soft tissues.
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the integration was approximated by a summation (trap-
ezoid rule),

 

where Wp

N
 is the strain energy at step N for loading pro-

tocol p for an element within the sample domain. In this 
way, a unique strain energy density data set was generated 
for each element within the sample domain. The new step-
wise method is referred to as the Nonlinear Generalized 
Anisotropic Inverse Mechanics method or the NGAIM 
method.

Computational experiments

The NGAIM method was applied to simulations of biaxial 
extensions generated based on a closed-form nonlinear 
fiber-based structural model for soft tissues that we have 
used previously (Raghupathy & Barocas 2009; Witzenburg 
et al. 2016). Briefly, it considers contributions from a pop-
ulation of fibers in which the constituents are assumed to 
deform affinely and stresses are assumed to be additive. 
The fiber population is represented by a bidirectional von 
Mises distribution,

 

where κ signifies the degree of anisotropy, and μ is the 
preferred fiber direction. The constitutive equation for the 
fiber is an exponential form based on the Green strain,

 

where �f  is the fiber stretch for a fiber aligned with angle θ 
and Sf is the second Piola–Kirchoff stress in the fiber. The 
constants A and B capture the overall stiffness and non-
linearity of the fiber response, respectively. If A increases, 
the fiber is stiffer at all strain levels, and if B increases, 
the fiber stress–strain response becomes more nonlinear. 
The overall stress within the tissue is the sum of all the 
fiber stresses. Strength of alignment (κ  =  1.5), stiffness 
(A = 5 kPa), and nonlinearity (B = 12) were selected based 
on previous fits of the NFSM to data from rat myocardium 
(Witzenburg 2014), cadaveric bladder wall (Raghupathy 
2011), and cadaveric annulus fibrosus lamellae (Nagel  
et al. 2014). For the remainder of this article, we use the 
term ‘simulated experiment’ to refer specifically to the 
results of the simulation using the closed-form nonlin-
ear fiber-based structural model, including results that 

(9)W
p

N
=

N∑
k=0

(
Sk+1ij + Skij

)

2

(
Ek+1
ij − Ek

ij

)

(10)
f (�;�,�) =

1

�I0(�)
exp{� cos [2(� − �)]}, � ∈ [0, �)

(11)Sf = A
{
exp

[
B
(
�
2
f − 1

)]
− 1

}

where SNij  is the PK2 stress in reference to the global unde-
formed sample configuration at the end of step N, and 
the PK2 stress for the first step is determined from the 
small-strain analysis. Because of the nonlinearity of large-
strain kinematics, however, strain is not additive, (i.e. for 
N > 1, EN

ij ≠ ∑N

n=1 �
n
ij). The finite element discretized form 

of Equation (3), is
 

The stress summation can be restated in terms of the 
known and unknown �mjqr values:
 

At step N, the LHS of Equation (7) is entirely known, and 
the RHS contains the unknown �N

mjqr. Under the assump-
tion that �mjqr is constant over each element, the equation 
leads to a new global linear matrix equation for all steps 
beyond the first of the form

 

where M is a matrix consisting of the terms that remain 
when the material parameter terms on the RHS of 
Equation (7) are factored out (defined in supplemen-
tary material). As stated above, rather than minimiz-
ing a residual force norm, the change in the differential 
neo-Hookean elasticity tensor, N −N−1, is minimized 
subject to the constraint that the residual force norm of 
Equation (8) be zero.

(iii) Generating an elemental constitutive and strain 
energy data set

The solution of the global matrix equation at each step of 
each protocol yields a unique differential neo-Hookean 
elasticity tensor for each subregion (small-strain) or ele-
ment (large-strain) within the sample domain. The PK2 
stress was obtained from those tensors using Equations (4) 
and (5). By combining all the PK2 stresses calculated over 
all segments of all protocols for an element along with the 
corresponding Green strain, a set of ordered pairs, (E, S), 
was generated for each element; essentially, each set of 
pairs (E, S) function as a mechanical characterization of 
its element as a unique material (Figure 1(b-(iii))).

For a hyperelastic material, the work necessary to 
deform a body is its intrinsic strain energy density, 
W = ∫ SijdEij. In the case of the piecewise linear model, 
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Equation (13). The exponential fit of the equibiaxial data 
yielded a B = 12.9 for the simulation.

An additional unrelated strain energy function was fit 
to the NGAIM results in order to test the method’s the 
flexibility. The strain energy density function utilized, 
the four-fiber family model, is a popular choice (Baek et 
al. 2007; Gleason et al. 2008; Masson et al. 2008; Wicker  
et al. 2008; Eberth et al. 2009; Wan et al. 2010; Di Achille 
et al. 2011; Sokolis et al. 2011) to describe the mechanical 
behavior of arteries. The strain energy function W is

 

where c, c1(k), c2(k), are material parameters and the invar-
iants I1 and I4(k) are

 

where C is the right Cauchy–Green deformation ten-
sor. The fiber orientations are defined in the reference 
configuration by the unit vectors m

�k
, which depend 

on angle �k between the direction of the kth family of 
collagen fibers and the horizontal direction for the 
cruciform shaped sample. Following (Masson et al. 
2008), although the constitutive model (14) includes 
four collagen-fiber families characterized by fiber 
angles �k, one fiber angle was assumed to be oriented 
along the vertical axis 

(
�1 = 90◦

)
, another fiber angle 

was assumed to be oriented along the horizontal 
axis 

(
�2 = 0◦

)
, and the remaining fiber angles were 

assumed to be symmetrically oriented diagonal fib-
ers (i.e. �3 = � and �4 = −�). Additionally, fibers were 
assumed to have similar behaviors (i.e. c1(k) = c1 and 
c2(k) = c2). Consequently, from (14) and the assump-
tions, four parameters were fit (c, c1, c2, and �). Initial 
guesses for both simulations for each parameter were 
based on average best-fit values from (Masson et al. 
2008, c = 37 kPa, c1 = 16 kPa, c2 = 14, and � = 58°), and 
a nonlinear simplex search, fminsearch, in Matlab was 
used to fit the four-fiber family model strain energy to 
the NGAIM strain energy.

Results

Stress fields

The full stress fields for the equibiaxial and right-arm-
only extensions for the simulation with the inclusion 
(�inclusion = 80°) are shown for the final time step in 
Figures 3 and 4, respectively, alongside the stress-fields 
determined by NGAIM. The agreement between the stress 

(14)

W =
c

2

(
I1 − 2

)
+

4∑
k=1

c1(k)

4 ∗ c2(k){
exp

[
c2(k) ∗

(
I4(k) − 1

)2]
− 1

}

(15)I1 = tr(C), I4(k) = m
�k

(
Cm

�k

)
for k = 1, 2, 3, 4

would be measurable experimentally (e.g. grip forces) and 
results that could not be measured but are available from 
the simulation and used for comparison with NGAIM 
calculations (e.g. stress or strain energy).

The simulated data were created for a cruciform sample 
(Figure 2) primarily aligned in one direction (� = 20°) 
except for an inclusion with fibers of the same properties 
but different alignment (�inclusion = 80°). The results for 
this in silico problem will be presented in detail. Details as 
to the determination of the homogeneous subregions used 
in the small-strain analysis for this simulated sample are 
given in (Witzenburg et al. 2016). Additional studies were 
done on the same geometry but with variations in fiber 
stiffness (A), fiber nonlinearity (B), or degree of anisotropy 
(�); these studies are summarized in the main article and 
presented in more detail in the supplemental material. The 
supplemental material also includes a study in which the 
simulated tissue was radially aligned.

Fitting NGAIM results

The simulation parameters of the closed-form nonlinear 
fiber-based structural model, A, B, κ and μ, were fit to 
the W–E curves determined for each element by NGAIM 
using a nonlinear simplex search, fminsearch, in Matlab. 
The small-strain analysis yields the maximum Kelvin 
modulus, EK, anisotropy index, r, and preferred stiffness 
direction, θ which describe the linear material behavior. 
In brief, 1 was expressed as a second-order tensor and 
its eigenvalues and eigentensors allow for the determi-
nation of material stiffness, EK, and anisotropy, r and θ 
(Raghupathy & Barocas 2010; Raghupathy, Witzenburg  
et al. 2011 describe this analysis in more detail). Here, 
since EK, r, and θ were generated for the first step only, they 
were used to generate the initial guesses for the simulation 
parameters. The initial guess for the degree of anisotropy, 
κ, was determined from r,

 

and the initial guess for the preferred fiber direction, μ, 
was set to the preferred stiffness direction, θ. The product 
AB can be determined directly from EK,

 

where I0 and I1 are modified Bessel functions of first kind 
and zeroth and first orders, respectively. Since the product 
AB cannot be separated for small-strain data, the initial 
guess for B was determined from an exponential fit of 
Equation (11) to the equibiaxial grip force vs. grip stretch 
data, and then the initial guess for A was determined from 

(12)� =
r

1 − r2

(13)AB =
2� ∗ EK∗I0(�)

�I1(�)
√

4 +
1

�
2
+ 2�I0(�) − I1(�)
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Strain energy

The quality of the NGAIM estimate is even clearer when all 
time steps are considered. For clarity, two elements within 

in the simulation and the stress calculated by NGAIM is 
very good, especially when one considers that the NGAIM 
calculation is based only on the displacement fields and 
the grip forces.

Figure 3. Stress field for the simulated sample containing an inclusion (�
inclusion

= 80
°) at the end of the final time step for the equibiaxial 

extension.

Figure 4. Stress field for the simulated sample containing an inclusion (�
inclusion

= 80
°) at the end of the final time step for the right-arm-

only extension.
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Figure 6 shows the strain energy from the simulated 
experimental protocols and from NGAIM for selected 
elements inside and outside the inclusion (Figure 2). The 
plots show points in 

(
Exx ,Eyy ,Exy

)
 space, with each point 

representing the strain tensor in the element at a specific 
step of a specific protocol. The color of the point gives 
the strain energy at that strain state. Thus, at the origin (
Eij = 0

)
, the strain energy is zero, and it increases as 

points get farther from the origin, again note the high 
degree of nonlinearity indicated by the log-axis. The 
plots for the two different elements have different points 
because the two elements experience different deforma-
tions, and the strain energy is different for each element 
because of the difference in fiber alignment. For example, 

the central region of cruciform shaped sample will be ana-
lyzed, one located in the middle of the inclusion and the 
other location outside of the inclusion, as marked earlier 
in Figure 2. Figure 5 shows the stress vs. strain (Sxx vs. Exx 
and Syy vs. Eyy) for the two elements for the equibiaxial 
and right-arm-only extensions. Note the high degree of 
nonlinearity present. NGAIM provides a good estimate of 
the stress in the tissue at each point for the two experimen-
tal protocols. Care must be taken when interpreting these 
plots, however, since the two curves are not independent 
and Exy is not zero. A true plot of stress vs. strain would 
have to be six-dimensional. The dimensionality of the sys-
tem can be reduced somewhat by plotting the strain energy 
density as a function of the three strain components.

Figure 5. Stress–strain plots for representative elements. The stress and strain are plotted as (Sxx vs. Exx) and (Syy vs. Eyy) for elements inside 
and outside the inclusion (shown in Figure 2) and for both equibiaxial and right-arm-only extension. The NGAIM analysis provides a good 
match to the actual stress in the simulated experiment. It is important to recognize that these are not true stress–strain curves because 
they are not independent (i.e. Exx contributes to Syy and vice versa) and that the shear strain, Exy, is non-zero and thus also contributes to 
the stress even though it is not shown in the figure.
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fiber-based structural model better fit the strain energy 
data set determined by NGAIM; this result was expected 
since that model was used to generate the simulated exper-
iments. The best-fit four-fiber family model parameters 
were c = 2.1e−11 kPa, c1 = 17.5 kPa , c2 = 6.7e−3 kPa, 
and α = 28.1° for the element within the inclusion and 
c = 1.2e−7 kPa , c1 = 16.6 kPa , c2 = 9.6e−3 kPa, and 
α  =  21.8° for the element outside the inclusion. Even 
though the four-fiber family model is different from the 
closed-form nonlinear fiber-based structural model, the 
strain energies from the four-fiber family model are in 
fairly good agreement with the simulated experiment over 
a very broad range. This result is important because in a 
real experiment, one would not know the best constitutive 
form a priori.

For the nonlinear fiber-based structural model, the 
fitted parameters are compared to those utilized to gen-
erate the simulations in Figure 9. If the fitted parameters 
matched those used to generate the simulation then the 
degree of anisotropy, fiber stiffness, and fiber nonline-
arity graphs would be white. The fitted NGAIM results 
were able to recapture the prescribed simulation param-
eters well. Regions near the grips and edges experience 
smaller ranges in strain due to sample geometry, so the 
NGAIM fitted estimates are less accurate there. There is 
very good agreement between the fiber orientation pre-
scribed and the fiber orientation recovered both within 

looking at points along the plane Exx = 0.1, one can see 
that the strain energy is higher for the outside-inclusion 
case; this difference is due to the alignment of more fibers 
in the x-direction in the outside-inclusion case. For both 
elements, the simulated experiment and NGAIM analysis 
agree very well. The comparison is continued in Figure 7,  
which shows the strain energy data from Figure 6 as a 
scatter plot of Wsimulated vs. WNGAIM where each point rep-
resents one step in one protocol. If NGAIM were esti-
mating the stresses and thus the strain energy perfectly, 
all of the points would be on the line of equality. There is 
some deviation, especially at the high strain energy val-
ues, but the agreement is very good. The normalized root-
mean-squared deviation is 2.8% for the element within the 
inclusion and 4.0% for the element outside the inclusion 
(Figure 8).

Fitting the NGAIM strain energy data set

The strain energy data set determined by NGAIM was fit 
by both the closed-form nonlinear fiber-based structural 
model (used to generate the simulation) and the four-
fiber family model (unrelated strain energy function). 
The fits for both the closed-form nonlinear fiber-based 
structural model and the four-fiber family model are 
shown in Figure 8. The normalized root-mean-square 
deviation (NRMSD) indicates the closed-form nonlinear 

Figure 6. Strain energy (color bar) generated by the simulation and determined by NGAIM for all extensions plotted in strain space for 
both the element within the inclusion and the element just outside the inclusion. The strain energy in the E

xx
= 0.1 plane (gray) is lower 

for the element within the inclusion than for the element outside the inclusion because the fibers are rotated away from the x-axis in 
the inclusion.
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from the bulk sequentially in strength of alignment 
(κbulk = 1.5 and κinclusion = 6.0), stiffness (Abulk = 5 kPa 
and Ainclusion = 20 kPa), and nonlinearity (Bbulk = 12and 
Binclusion = 48) were performed. The closed-form non-
linear fiber-based structural model parameters deter-
mined by fitting the stress–strain behavior predicted 
by the NGAIM method compared with the parameters 
used to generate the simulated sample are shown for 
each additional simulation in Figure 10. In all cases the 
NGAIM method performed well. The poorest match 
of NGAIM to the simulation strain energy occurred 
in the element within the inclusion for the simulation 
in which nonlinearity varied between the bulk and 
inclusion.

the inclusion and at the inclusion border. In addition, 
the degree of anisotropy 

(
�simulation = 1.5

)
, fiber stiff-

ness (Asimulation = 0.005Mpa), and fiber nonlinearity (
Bsimulation = 12

)
 were well recovered, particularly in the 

central region of the sample. An additional fit of the 
closed-form nonlinear fiber-based structural model was 
performed for the simulation with varied alignment in 
which the initial value of B was set to 1 and to 24 in order 
to gauge the influence of initial guess on the final fit. When 
the initial value of B was set to 1 the NRMSD was 2.9 and 
4.1% and when it was set to 24 the NRMSD was 2.7 and 
4.1%, for the element within the inclusion and the element 
outside the inclusion, respectively. Thus, large variations 
in the initial guess for B caused at most an increase in 
NRMSD of only 0.1%.

Additional simulations on the cruciform sample 
with a central triangular shaped inclusion that varied 

Figure 7.  Strain energy determined using the NGAIM vs. the 
strain energy generated by the simulation for all steps (dots) of 
each experimental protocol (colors) for the element within the 
inclusion (a) and the element just outside of the inclusion (b). The 
diagonal black line indicates a perfect prediction.

Figure 8. Strain energy determined using NGAIM (colored dots), 
determined by the fit of the closed-form nonlinear fiber-based 
structural model to the NGAIM results (colored squares), and  
determined by the fit of the four-fiber family model to the NGAIM 
results (colored circles) vs. the strain energy generated by the 
simulation for all biaxial extensions for the element within the 
inclusion (a) and the element just outside of the inclusion (b).  
The diagonal black line indicates a perfect prediction. Inset bar 
graphs indicate the NRMSD associated with both NGAIM and the fits.
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segments of all protocols for a particular region, a set of 
stress–strain curves was determined from which a unique 
strain energy density data set was generated.

The in silico results for NGAIM show good agreement 
between the strain energy and full-field stress recovered by 
NGAIM and that generated by the closed-form nonlinear 
fiber-based structural model. In particular, as shown in 
Figures 5–7, the behavior of the sample throughout test-
ing, and not just at its endpoint, is captured. The closed-
form nonlinear fiber-based structural model parameters 
utilized to generate the simulation were well-recovered, as 
shown in Figure 9, particularly within the inclusion and at 
its border. For the other studies on strength of anisotropy, 
stiffness, and nonlinearity NGAIM performed well gen-
erally. For all simulations, NGAIM exhibited larger errors 
at larger strain levels, likely due to the exponential nature 
of the stress–strain behavior of the tissue. One potential 

Discussion

The key to extending GAIM was to discretize each non-
linear curve into many short linear segments, an approach 
which allows for the consideration of the nonlinear 
force-displacement curves without sacrificing the tremen-
dous efficiency advantage of the linear model. Piecewise 
linear representation of a nonlinear function is straight 
forward in one dimension, but implementation in the 
context of a two-dimensional large-deformation exper-
iment is not trivial. The NGAIM method generates a set 
of local elasticity tensors describing the material behavior 
of a particular element within the sample for part of one 
test protocol. Multiplying each tensor by the strain meas-
ured experimentally in that region during that portion 
of the testing protocol yields an incremental stress. By 
combining all the incremental stresses calculated over all 

Figure 9. Simulation parameters recovered by fitting the W-strain behavior predicted by NGAIM with the closed-form nonlinear fiber-
based structural model compared with the parameters used to generate the simulated sample. The preferred fiber direction prescribed 
is in black and the one recovered by NGAIM is in green. All other parameters are shown on scales which place the original values at the 
center (i.e. white denotes a perfect match between fitted parameters and values used to generate the simulation).
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at the grip. A tester that utilizes multiple load cells (like 
that of Khalsa et al. 1996; Flynn et al. 1998) would also 
allow for more detailed force measurements at the sample 
boundary and the direct imposition of shear. As indicated 
by Sacks (2014), however, when asymmetric loading is 
introduced in this manner during planar biaxial testing, 
there is the potential for out-of-plane deformation. Sacks 
suggests rotation of the test specimen such that the fiber 
and cross-fiber directions do not coincide with the test 
machine axes and the use of rotating carriages to induce 
shear and avoid wrinkling. A multiaxial tester like that 
of Nielsen and colleagues (Malcolm et al. 2002; Nielsen 
et al. 2002) is a more involved, sophisticated approach to 
the introduction of shear. It allows for a broader strain 
space to be imposed on each region of the sample while 
controlling against out-of-plane deformation. In addition, 
though it is more experimentally demanding, the Nielsen 
apparatus allows for more detailed measurement of force 
at the sample boundary. The series of biaxial experimen-
tal protocols poses practical challenges to biaxial testing 
since the potential for damage or irrecoverable deforma-
tion increases with the number of protocols performed. 

remedy for this issue is the use of a variable step size (large 
steps in the small strain regime and smaller steps in the 
large strain regime). At extremely high levels of nonlin-
earity, as seen in the simulation with regionally varying 
nonlinearity, NGAIM performed poorly. While step size 
reduction is a practical solution for physiologic nonlinear-
ity levels, step size cannot be reduced indefinitely because 
of the resolution limits on the deformation tracking. Thus, 
the NGAIM method may not be appropriate for materials 
with extremely strong nonlinear behavior. A value of B 
~ 12, similar to that found previously for various tissues 
(rat myocardium, cadaveric bladder wall, and cadaveric 
annulus fibrosus lamellae), was acceptable, but a very large 
value, such as 48, proved troublesome.

There are functional limitations to the implemen-
tation of NGAIM due to biaxial testing. The ill-suited-
ness of biaxial testing to the generation of shear strain 
limits the strain-space spanned for each element, as 
observed in Figure 6 as the Exy axis is relatively shorter 
than the Exx and Eyy axes. One solution is to use six-de-
gree-of-freedom load cells (JR3 Inc.), which allow for 
the measurement of both the normal and shear forces 

Figure 10.  Elemental results for the serially changing simulations in which strength of alignment (�), fiber stiffness (A), and fiber 
nonlinearity (B) varied regionally. Strain energy determined using NGAIM (colored dots), determined by the fit of the closed-form 
nonlinear fiber-based structural model to the NGAIM results (colored squares), and determined by the fit of the four-fiber family model 
to the NGAIM results (colored circles) vs. the strain energy generated by the simulation for all biaxial extensions for the element within 
the inclusion and the element just outside of the inclusion. The diagonal black line indicates a perfect prediction. Inset bar graphs the 
normalized root-mean-square deviation associated with both NGAIM and the fits.
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Appendix 1. Step size determination

In order to fit the GAIM Method to the data in a stepwise 
manner, first an appropriate step size must be determined. 
To determine step size, lines were fit to the force vs. time 
curves for each biaxial extension, as shown in Figure A.1 
for the simulated sample containing an inclusion with fiber 
orientation different from the bulk (Figure 2). The coeffi-
cient of determination, r-squared, was used to evaluate the 
linear fit. If the slope of the data was sufficiently non-zero (
in this case , ||slope|| > 5.6e − 7

)
, then the r-squared value was 

calculated. The minimum r-squared value was calculated for 
all steps and all protocols and if it was less than 0.9 (the level 
at which a stepwise linear approximation was deemed appro-
priate), step size was reduced. For the simulation, a step size of 
0.5 s was selected and the minimum r-squared value calculat-
ed for all steps and all protocols was 0.9044. The displacement 
fields for the sample at the end of each step for the equibiaxial 
and right-arm-only extensions are shown in Figures A.2(a) 
and (b), respectively.
The step size is an important specification when implement-
ing NGAIM. The closed-form nonlinear fiber-based struc-
tural model has nearly infinite time resolution, so any step 
size can be accommodated. But experimentally, there are 
practical limits that restrict how much step size can be re-
duced. The resolution and data acquisition rate of available 
load cells must be considered. In addition, if full-field dis-
placement is determined optically, both frame rate and spa-
tial resolution must be considered. The maximum displace-
ment of a node in any step of the representative simulation is 
0.09 mm, which assuming a spatial resolution similar to that 
achieved previously (Raghupathy et al. 2011; Witzenburg  
et al. 2012), is equivalent to approximately 8 pixels, a value 
that is reasonable given the image analysis and strain tracking 
methods utilized experimentally (Raghupathy 2011; Raghupa-
thy et al. 2011). The measurement of loads at low levels requires 
load cells with excellent resolution and accuracy. In addition, 
precise levels of preload and preconditioning must be applied 
carefully. For experimental data obtained using the biaxial test-
er (Instron1 load cells (JR3 Inc. (Nagel et al. 2014)) and 
digital camera (Cannon, 24 fps, 1080p HD resolution) 
available at the University of Minnesota, a step size of 
0.5 s is reasonable.
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Figure A.1. Final step size fits for the equibiaxial and right-arm-only extensions for the simulated sample containing an inclusion in 
which the fiber orientation is rotated, shown in Figure 2. Ten steps were utilized to describe the force behavior. Time is in units of seconds.

Figure A.2. Displacement field for equibiaxial and right-arm-only extensions for the representative simulation at the end of each step.
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